JOM 23834

Organophosphorverbindungen

LXXIII *. Abfangreaktion eines "*in situ*" erzeugten Silens mit ^tBu-C=P. Bildung eines Diphosphatricyclobenzoheptans

Bernhard Breit^a, Roland Boese^b und Manfred Regitz^a

^a Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67653 Kaiserslautern (Deutschland) ^b Institut für Anorganische Chemie der Universität Essen, Universitätsstraße, D-45117 Essen (Deutschland)

(Eingegangen den 13. April 1993)

Abstract

Silene 5 can be generated thermally from the disilacyclobutane 4 by [2+2] cycloreversion and trapped by reaction with two equivalents of phosphaalkyne 2 under formation of the disphosphatricyclobenzoheptane 6. Low-temperature X-ray crystal structure analysis confirms the result. A plausible reaction mechanism, based above all on cycloaddition steps and an ene reaction, is presented.

Zusammenfassung

Das Silen 5 läßt sich thermisch aus dem Disilacyclobutan 4 durch [2 + 2]-Cycloreversion erzeugen und kann durch Umsetzung mit zwei Äquivalenten Phosphaalkin 2 unter Bildung des Diphosphatricyclobenzoheptans 6 abgefangen werden. Tieftemperatur-Kristallstrukturanalyse bestätigt das Ergebnis. Ein plausibler Reaktionsmechanismus, der vor allem auf Cycloadditionsschritten und einer En-Reaktion beruht, wird vorgestellt.

Key words: Silene; Phosphaalkyne; Cycloaddition

1. Einleitung

Kinetisch stabilisierte Phosphaalkine (2, R statt ^tBu) haben sich in der vergangenen Dekade als vorzügliche Cycloadditionspartner für elektronendefiziente Spezies, 1,3-Dipole, 1,3-Diene und 1,4-Diene ("Homo Diels– Alder-Reaktion") erwiesen [2]. Im Gegensatz hierzu sind [2 + 2]-Cycloadditionen von Phosphaalkinen mit Mehrfachbindungssystemen nur in Einzelfällen bekannt geworden und auch dort nicht immer als solche zweifelsfrei belegt [3].

Auch bei der von uns kürzlich beschriebenen Umsetzung eines stabilen Germens (1) mit dem Phosphaalkin 2 wird anstelle eines erwarteten [2 + 2]-Cycloadduktes der beiden π -Systeme eine komplexe Reak-

Correspondence to: Prof. Dr. M. Regitz.

tionssequenz under Bildung des Polycyclus 3 aufgefunden, für die Diels-Alder- und En-Reaktion sowie eine intramolekulare [4 + 2]-Cycloaddition verantwortlich gemacht werden [4].

In diesem Zusammenhang haben wir uns die naheliegende Frage gestellt, ob nicht doch Silene — also Verbindungen mit Si=C-Doppelbindungen — mit Phosphaalkinen wie 2 unter Bildung von Phosphasilacyclobutenen reagieren. Es ist nämlich bekannt, daß Silene des Brook-Typs wie 5 bereitwillig mit 1-Phenylpropin unter [2 + 2]-Cycloaddition Vierringsysteme bilden [5]. Das Silen 5 is zwar nicht monomer bekannt, kann aber thermisch aus dem "Kopf-Kopf-Dimer" problemlos generiert werden [5].

2. Synthese und Spektroskopie von 6

Bringt man das 1,2-Disilacyclobutan 4 in Toluol bei 90°C mit einem Überschluß an Phosphaalkin 2 zur

^{*} LXXII. Mitteilung siehe Lit. [1].

Reaktion, so erhält man ein farbloses, kristallines 1:2-Addukt beider Reaktionspartner. Massenspektrum und Elementaranalyse sind hiermit im Einklang.

Auch das ¹H-NMR-Spektrum mit fünf 9H-Singuletts für drei Trimethylsilyl- und zwei -Butylreste belegt eindeutig das Reaktandenverhältnis. Charakteristisch ist die Resonanz des Protons an C-7 bei $\delta = 2.63$ mit einer ²J(P,H)-Kopplung von 7.4 Hz. Am Auftreten dieses Signals sowie aus der Tatsache, daß nur noch vier Aromatenwasserstoffe im Produkt nachzuweisen

Abb. 1. ORTEP-Plot von 6 im Kristall mit 50% Ellipsoiden, Wasserstoffatome übersichtshalber weggelassen.

sind, erkennt man den Einbau des Arylrestes in das polycyclische System.

Das ³¹P-NMR-Spektrum weist bei typisch hohem Feld ($\delta = -147.2$ und -77.6) ein AX-Muster für eine Diphosphiraneinheit auf [6]. Ungewöhnlich ist nur die mit 72.8 Hz verhältnismäßig kleine Kopplung der beiden Heterokerne. Das gleiche Phänomen wurde kürzlich von uns auch an einem Cyclotetramer von 2 aufgefunden, das ebenfalls einen Diphosphiran-Baustein besitzt [7].

Der Kohlenstoff C-1a des Dreirings tritt im ¹³C-NMR-Spektrum bei erwartet hohem Feld ($\delta = 38.4$) als doppeltes Dublett mit ¹J(P,C)-Kopplungen von 67.1 und 65.6 Hz in Resonanz. Ebenfalls im sp³-Bereich absorbieren C-7 ($\delta = 49.2$) und C-6 ($\delta = 78.6$). Ihre direkte Nachbarschaft zu Phosphoratomen geht aus den relativ kleinen ¹J(P,C)-Kopplungen von 22.1 bzw. 20.1 hervor. Daß keiner der beiden Phosphorkerne unmittelbar an einen Aromatenkohlenstoff gebunden ist, geht aus dem Fehlen von Phosphorkopplungen hervor.

3. Tieftempertur-Kristallstrukturanalyse von 6

Die Kristallstrukturanalyse von 6 entscheidet letzlich über die Struktur des aus der Reaktion 4 (bzw. 5) +2 hervorgegangenen Produktes. In Abb. 1 ist die Struktur des Polycyclus im Kristall wiedergegeben, Tab. 1 enthält die Atomkoordinaten und thermischen Parameter, in Tab. 2 schließlich sind ausgewählte Bindungsabstände und -winkel zusammengestellt.

Mit 2.188(3) Å liegt die P-P-Bindung der Diphosphiran-Einheit im erwarteten Bereich [4,6]. Auch die P-C-Bindungsabstände im Dreiring weichen mit

TABELLE 1. Atomkoordinaten $(\times 10^4)$ und äquivalente isotrope Temperaturfaktoren $(\mathring{A}^2 \times 10^4)$ von 6

Atom	x	<i>y</i>	<i>z</i>	U ^a
P(1)	2654(2)	9485(2)	6183(1)	222(7)
P(2)	643(2)	9472(2)	8656(1)	227(7)
Si(1)	3513(2)	7699(2)	7870(1)	247(7)
Si(2)	3298(2)	6049(2)	7175(1)	264(7)
Si(3)	1651(3)	7542(2)	9482(1)	399(9)
Si(4)	6067(2)	7498(2)	8083(1)	296(8)
O(1)	2879(6)	7451(5)	8778(3)	402(22)
C(1)	1475(7)	11214(6)	5885(4)	220(25)
C(2)	306(7)	11 282(6)	6604(4)	206(25)
C(3)	2398(7)	9347(7)	7347(4)	209(25)
C(4)	2128(7)	10539(6)	7727(4)	199(25)
C(5)	935(7)	11 587(6)	7354(4)	203(25)
C(6)	548(8)	12725(7)	7668(4)	244(27)
C(7)	1364(8)	12830(7)	8328(5)	282(29)
C(8)	2516(8)	11 787(7)	8693(5)	317(30)
C(9)	2885(8)	10657(7)	8387(4)	258(27)
C(10)	2394(8)	12135(7)	5622(4)	251(27)
C (11)	3126(9)	11 770(7)	4814(5)	361(31)
C(12)	1475(8)	13 545(7)	5445(5)	330(30)
C(13)	3610(8)	11977(8)	6255(5)	380(32)
C(14)	- 1374(7)	11 989(7)	6378(4)	224(25)
C(15)	- 2271(8)	11 907(8)	7162(5)	332(30)
C(16)	- 1778(8)	13378(7)	5963(5)	318(29)
C(17)	- 1911(8)	11 304(7)	5770(5)	330(29)
C(18)	4177(8)	4548(7)	7922(5)	321(28)
C(19)	1338(8)	6137(8)	6991(6)	417(34)
C(20)	4279(8)	5932(7)	6172(5)	353(30)
C(21)	1148(12)	6038(10)	9629(7)	750(51)
C(22)	- 22(8)	8927(8)	9189(5)	381(32)
C(23)	2511(12)	7694(12)	10444(6)	864(55)
C(24)	6399(10)	7486(9)	9206(5)	541(40)
C(25)	6562(8)	8843(8)	7459(5)	368(31)
C(26)	7353(8)	5958(8)	7808(6)	500(37)

^a Äquivalente isotrope U's, definiert als 1/3 der Spur des orthogonalisierten U_{i} -Tensors.

1.890(7) Å für P1-C3 und 1.837(7) Å für P2-C3 nicht von der Norm ab [4,6]. Es fällt noch auf, daß die beiden innercyclischen Winkel des 1,2-Diphosphetan-Inkrementes P(2)-P(1)-C(1) und P(1)-P(2)-C(2) mit

TABELLE 2. Ausgewählte Bindungsabstände (Å) und -winkel (°) von $\mathbf{6}$

P(1)-P(2)	2.188(3)	P(1)-C(3)	1.890(7)
P(2)-C(3)	1.837(7)	P(1)-C(1)	1.885(6)
P(2)-C(2)	1.918(7)	C(1)-C(2)	1.586(9)
C(2)–C(5)	1.510(11)	C(3)-C(4)	1.500(10)
Si(1)-C(3)	1.878(6)		
P(1)-P(2)-C(3)	55.2(2)	C(1)-P(1)-C(3)	98.0(3)
P(2)-P(1)-C(1)	79.6(2)	P(2) - P(1) - C(3)	52.9(2)
P(1)-P(2)-C(2)	79.6(2)	C(2) - P(2) - C(3)	86.6(3)
P(1)-C(3)-P(2)	71.9(3)	P(2)-C(2)-C(1)	96.3(4)
P(1)-C(1)-C(2)	98.6(4)		

79.6° trotz unsymmetrischer Substitution den gleichen Wert besitzen (s. Tab. 2).

4. Mechanistische Betrachtung

Versucht man eine mechanistische Deutung dieser ungewöhnlichen Reaktion, so ist ein Vergleich mit der Germen-Reaktion $1 + 2 \rightarrow 3$ angebracht. Dort startet die Umsetzung mit einer Diels-Alder-Reaktion, bei der das Germen unter Einbeziehung einer aromatischen C = C-Doppelbindung die Rolle des 1,3-Diens übernimmt [4]. Grundsätzlich könnte auch das Silen 5 als Hetero-1,3-dien die Reaktionsfolge durch eine [4 + 2]-Cycloaddition mit dem Phosphaalkin 2 eröffnen, was aber durch die Produktstruktur ausgeschlossen wird. Die Startreaktionen beider Prozesse sind also unterschiedlich.

Eine [2 + 2]-Cycloaddition zwischen Silen 5 und Phosphaalkin 2 dagegen, die zunächst zum Dihydrosilaphosphet 7 führt, vermag die Bildung von 6 letzlich zu erklären. Umlagerung im Sinn der Pfeile (triotope Reaktion) führt unter Aufhebung der Aromatizität im Phenylrest zu 8. Die "Sauerstoffaffinität" des Siliciums ist sicher eine Triebkraft dieser Umlagerung; auch die Aufweitung eines Vierringes zu einem Fünfring mit niederkoordiniertem Phosphor ist thermodynamisch günstig. Vergleichbare Verschiebungen von Silyloxyresten sind in der Literatur bekannt, z.B. bei der Reaktion von Tri-t-butylazet mit 4 and bzw. 5. Mechanistisch (Synchron- [8] Mehrstufenprozeß [9,10]) ist darüber noch nicht entschieden. En-Reaktion des Phosphaallylsystems von 8 mit dem zweiten Äquivalent 2 [11] führt schließlich zu 9, von dem die abschließende, intramolekulare Diels-Alder-Reaktion zu 6 ausgeht. Die beiden letzten Reaktionsschritte sind auch für die Bildung von 3 aus 1 und 2 verantwortlich [4].

5. Experimenteller Teil

Schmelzpunkt: Mettler FP 61 (Aufheizrate 3° C/min). Elementaranalyse: Perkin–Elmer Elemental Analyzer 240. IR: Perkin–Elmer 710 B. ¹H-NMR: Bruker AM 400 (Tetramethylsilan als interner Standard). ³¹P-NMR: Bruker AM 400 (85proz. H₃PO₄ als externer Standard). Die Umsetzung wurde unter getrocknetem, sauerstoffreiem Argon ausgeführt; das Reaktionsgefäß wurde vor Gebrauch mehrmals evakuiert, ausgeheizt und mit Argon belüftet. Die Lösungsmittel waren wasserfrei und wurden unter Argon destilliert sowie aufbewahrt.

5.1. 1a-[Bis(trimethylsilyl)-trimethylsiloxy]-silyl-6,7-di-tbutyl-1aH,6H-1,6a-diphospha-1,6-methanocyclopropa-[a]inden (6)

Die Lösung von 4 [5] (0.50 g, 0.71 mmol) und 2 [12] (0.43 g, 4.3 mmol) in 2 ml Toluol wird während 6 h in einem Druck-Schlenkrohr (5 bar Argondruck) unter magnetischem Rühren auf 90°C erhitzt. Man dampft anschließend bei $25^{\circ}C/10^{-3}$ mbar ein und unterwirft das verbleibende rote Öl einer Kugelrohrdestillation bei $180^{\circ}C/10^{-3}$ mbar. Ausb.: 0.60 g (75%) 6 als gelbes Öl. Zweimaliges Umkristallisieren aus n-Pentan bei -78 und -30°C liefert analysenreine, farblose, an der Luft zerfließende Kristalle, die bei ca. 30°C schmelzen. IR(Film): $\nu = 3040, 2935, 1452, 1383, 1364, 1220, 1040,$ 830, 745, 678 cm⁻¹. ¹H-NMR(C₆D₆): $\delta = 0.20$ (s, 9H, OTms); 0.26 (s, 9H, Tms); 0.27 (s, 9H, Tms); 0.48 (s, 9H, ^tBu); 1.17 (s, 9H, ^tBu); 2.63 (d, ${}^{2}J(P,H) = 7.4$ Hz, CH¹Bu), 6.6–7.1 (m, 3H, Aromaten-H); 7.4–7.5 (m, 1H, Aromaten-H). ¹³C-NMR ($C_6 D_6$): $\delta = 0.5$ (s, Si(CH₃)₃); 0.7 (s, Si(CH₃)₃); 2.4 (d, J(P,C) = 4.0 Hz, Si(CH₃)₃); 29.5 (d, ${}^{3}J(P,C) = 9.1$ Hz, C(CH₃)₃); 30.1 (d, ${}^{3}J(P,C) = 6.0$ Hz, $C(CH_{3})_{3}$); 35.1 (d, ${}^{2}J(P,C) = 9.1$ Hz, $C(CH_3)_3$; 35.2 (s, $C(CH_3)_3$); 38.4 (dd, ${}^{1}J(P,C) =$ 67.1 bzw. 65.6 Hz, C-1a); 49.2 (d, ${}^{1}J(P,C) = 22.1$ ${}^{1}J(C,H) = 131.8$ Hz, C-7); 78.6 (d, ${}^{1}J(P,C) = 20.1$ Hz, C-6), 124.4; 124.6; 126.4; 126.7 (jeweils s, Aromaten-C); 141.9; 149.5 (jeweils s, C-1b bzw. C-5a). ³¹P-NMR(C₆D₆): $\delta = -147.2$ (d, ¹J(P,P) = 72.8 Hz, P-1 bzw. P-6a); -77.6 (d, ${}^{1}J(P,P) = 72.8$ Hz, P-1 bzw. P-6a). MS (EI, 70 eV), m/z (relative Intensitäten): 553 (58) $[M^+]$, 495 (100) $[M^+ - Me_2C = CH_2]$, 452 (15 $[M^+ - Me_2C = CH_2]$) PC^tBu], 147 (61) [Si₂Me₆], 73 (34) [SiMe₃]. Gef.: C, 56.0; H, 8.8. C₂₆H₅₀OP₂Si₄(553.0) ber.: C, 56.47; H, 9.11%.

5.2. Kristallstrukturanalyse von 6 [13]

 $C_{26}H_{50}OP_2Si_4$, Kristalldimensionen $0.32 \times 0.19 \times$ 0.13 mm³, Diffraktometer Siemens R3/mV, Mo-K α -Strahlung, Graphitmonochromator, T = 120 K, Bestimmung der Zelldimensionen aus 25 zentrierten Reflexen: a = 9.573(4), b = 11.167(4), c = 16.268(7) Å, α $= 80.75(3), \beta = 88.21(3), \gamma = 71.01(3)^{\circ}, V = 1622(1) \text{ Å}^3,$ Z = 2. Datensammlung ($2\theta_{max} = 47^{\circ}$, 4804 unabhängige Intensitäten, davon 2996 beobachtet $(F_0 \ge 4\sigma(F))$, Kristallsystem triklin, Raumgruppe $P\overline{1}$, $\mu = 0.3 \text{ mm}^{-1}$, $\rho_{\rm her} = 1.132$ g cm⁻³. Die Strukturlösung erfolgte nach direkten Methoden (SHELXS) und die Strukturverfeinerung nach F in der vollen Matrix (SHELXTL-PLUS) mit 304 Parametern mit anisotropen Versetzungsfaktoren für alle Atome außer den Wasserstoffatomen, die als 'reitende Gruppen' mit jeweils gemeinsamen isotropen Versetzungsfaktoren verfeinert wurden. R =0.073, $R_{\rm w} = 0.077$, $w^{-1} = (\sigma^2(F_{\rm o}) + 0.005 \cdot F_{\rm o}^2)$, maximale Restelektronendichte 0.82 e $Å^{-3}$.

Dank

Unser Dank gilt dem Fonds der Chemischen Industrie, Frankfurt/Main, für Unterstützung mit Sachmitteln sowie die Gewährung eines Promotionsstipendiums für Bernhard Breit.

Literatur

- 1 M. Hafner, T. Wegmann und M. Regitz, Synthesis, (1993) im Druck.
- 2 M. Regitz in *Multiple Bonds and Low Coordination in Phosphorus* Chemistry (M. Regitz, O.J. Scherer (Hrsg.), 1 Aufl., Thieme, Stuttgart 1990, S 58ff.
- A.H. Cowley, S.W. Hall, C.M. Nunn and J.M. Power, Angew. Chem., 100 (1988) 874; Angew. Chem., Int. Ed. Engl., 27 (1988) 838; T. Wettling, J. Schneider, O. Wagner, C. Kreiter und M. Regitz, Angew. Chem., 101 (1989) 1035; Angew. Chem., Int. Ed. Engl., 28 (1989) 1013; B. Breit und M. Regitz, Chem. Ber., 126 (1993) 1945.
- 4 M. Lazraq, J. Escudié, C. Couret, U. Bergsträßer und M. Regitz, J. Chem. Soc., Chem. Commun., 24 (1993) im Druck.
- 5 A.G. Brook, J.W. Harris, J. Lennon and M. El Sheikh, J. Am. Chem. Soc., 101 (1979) 83.
- 6 (a) F. Mathey, Chem. Rev., 90 (1990) 997; (b) E.P.O. Fuchs, W. Rösch und M. Regitz, Angew. Chem., 99 (1987) 1058; Angew. Chem., Int. Ed. Engl., 26 (1987) 1011.
- 7 B. Breit, U. Bergsträßer, G. Maas und M. Regitz, Angew. Chem., 104 (1992) 1043; Angew. Chem., Int. Ed. Engl., 31 (1992) 1055.
- 8 A.G. Brook, W.J. Chatterton, J.F. Sawyer, D.W. Hughes und K. Korspohl, Organometallics, 6 (1987) 1246.
- 9 G. Märkl und M. Horn, Tetrahedron Lett., 24 (1983) 1477.
- H. Richter, S. Arenz, G. Michels, J. Schneider, O. Wagner und M. Regitz, Chem. Ber., 121 (1988) 1363.
- 11 Kurze Zusammenfassung zur En-Reaktion von Phosphaalkinen: M. Regitz, Chem. Rev., 90 (1990) 191. Vgl. auch U. Annen und M. Regitz, Tetrahedron Lett., 29 (1988) 1681; A. Marinetti, L. Ricard, F. Mathey, M. Slany und M. Regitz, Tetrahedron, 49 (1993) im Druck.

- 12 G. Becker, G. Gresser und W. Uhl, Z. Naturforsch., Teil, B., 36 (1981) 36; optimierte Vorschrift: W. Rösch, U. Hees und M. Regitz, Chem. Ber., 120 (1987) 1645.
- 13 Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wis-

senschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-400307, der Autoren und des Zeitschriftenzitats angefordert werden.